Sign for Notice Everyday    Sign Up| Sign In| Link| English|

Our Sponsors

    Receive Latest News

    Feedburner
    Share Us

    EEPS 2021 - 2021 International Conference on Energy Engineering and Power Systems(EEPS2021)

    View: 547

    Website http://www.iceeps.com/ | Want to Edit it Edit Freely

    Category Energy Engineering and Power Systems(

    Deadline: August 20, 2021 | Date: August 22, 2021-August 24, 2021

    Venue/Country: Hangzhou, China, China

    Updated: 2021-07-02 10:49:42 (GMT+9)

    Call For Papers - CFP

    Website URL: http://www.iceeps.com/

    Date: August 20-22, 2021

    Location: Hangzhou, China

    1.About the conference: 

    To adapt to this changing world and China's fast development in this new era, 2021 International Conference on Energy Engineering and Power Systems(EEPS2021) will be held in Hangzhou, China in its first year during August 20-22, 2021. this conference takes “bringing together global wisdom in scientific innovation to promote high-quality development” as the theme and focuses on cutting-edge research fields including Energy Engineering and Power Systems. This conference aims to expand channels of international academic exchange in science and technology, build a sharing platform of academic resources, promote scientific innovation on the global scale, improve academic cooperation between China and the outside world, enhance development of Energy Engineering and Power Systems. It also aims to encourage exchange of information on research frontiers in different fields, connect the most advanced academic resources in China and abroad, turn research results into industrial solutions, bring together talents, technologies and capital to boost development.

    2.Publication

    EI-JA

    For Energy Reports: The paper must fit within the scope of the journal. This means that, in case you have not done it yet, you must find a link between the research you are reporting and any kind of energy (production, consumption, efficiency, management, etc.)

    Selected papers will be published by Energy Reports (ISSN: 2352-4847) CiteScore: 4.7 Impact Factor: 3.595

    Indexing:

    EI Compendex-JA (EI核心-JA)

    DOAJ (Directory of Open Access Journal)

    SCIE (Science Citation Index Expanded)

    Scopus

    Inspec

    3.Important Dates

    Submission Deadline: 2021.5.30

    Notification Date: 1 weeks after the submission

    Conference Date: August 20-22, 2021

    4.Call For Papers

    1. Energy

    Wind power

    Solar energy

    Biomass and bioenergy

    Renewable energy

    Alternative fuels

    Electric power systems

    Nuclear power

    Energy in buildings

    2. New Energy Production, Storage, Transmission

    Greenhouse Gas Treatment 

    Thermal Energy and Power Engineering 

    Thermal Power Engineering 

    Energy Engineering & Environmental Engineering 

    Clean Energy Development 

    Thermal Engineering 

    3. Power systems

    Power and Energy Circuits and Systems

    Power Disaster and Protection

    Power Electronics and its Applications in Smart Grids

    Power IOT

    Power Market

    Power Quality, Protection and Electromagnetic 

    Conference Chairman

    Prof. Omid Mahian

    Xi'an Jiaotong University, China

    Prof. Hamidi Abdul Aziz

    Universiti Sains Malaysia, Malaysia

    Prof. Zhongliang Liu

    Beijing University of Technology, China

                                                                            

    Prof. Bang-Fuh Chen

    National Chen-Kung University, Tainan, China

      Prof. Hongfa Hu 

    University of Windsor

    Keynote Speaker

    Assoc. Prof. Bin Guan

    Shanghai Jiao Tong University, China

    Title: Advanced Aftertreatment Technologies and Integrated System to Meet Future Stringent Vehicle Emissions Regulations

    The presentation mainly introduces the emission of automobile pollutants, especially the emission of diesel vehicles, which has caused great damage to the environment, therefore, the control of pollutants from motor vehicles is imminent! The report analyzes and compares the ever tightening emission regulations for light vehicles and medium- and heavy-duty vehicles in Europe and the United States, and makes a detailed analysis of the advanced after-treatment control technology and after-treatment system integration that will meet the future vehicle emission regulations. On this basis, discussed the technical route to meet the future emission regulations.

    Assoc. Prof. Yingying Xiong

    Shanxi University, China

    Title: The study on agglomeration and removal of fine particles in wet phase transition condensation process

    In this paper, the field tests on agglomeration and removal of fine particles has been done in a 20t/h coal-fired power plant with installing the wet phase transition condensation device. In order to understand the removing mechanism of fine particle clearly, the effect of this device on fine particle agglomeration and removal efficiency were investigated with using numerical simulation method. The fine particle at the inlet and outlet of this system was collected with low pressure impactor. The particle size distribution was analyzed and characterized with Mastersizer 2000. The results showed that the inertial impaction are the major impact mechanisms for particles below 1μm with this wet phase transition agglomeration dust removal technique; the interception of internal structure and droplets played a dominant role in terms of impaction efficiency for particles above 1μm. But for submicron particles ranging from 0.1μm to 1μm, the increasing in vapor condensation and Brownian diffusion can improve particle removal efficiency significantly, because of the great difference at flue temperature. The removal efficiency of wet phase transition agglomeration dust removal technique is above 80%.

    Assoc. Prof. Tiemin Xuan

    Jiangsu University, China

    Title: Optical investigation on in-flame soot formation of diesel sprays

    In this study, a combined extinction and radiation (CER) methodology will be introduced. It was developed with different wavelengths and applied on quasi-steady Diesel flame to obtain the soot amount and temperature distribution simultaneously by considering self-absorption issues. All the measurements were conducted in a constant pressure combustion chamber. The fuel as well as the operating conditions and the injector used were chosen following the guidelines of the Engine Combustion Network. Uncertainty caused by wavelength selection was evaluated. After that, some important results and analysis on the effects of operating conditions and split-injection strategies on in-flame soot formation by means of CER technology will be presented.  

    Assoc. Prof. Abdul-Sattar Nizami

    Government College University, Pakistan

    Title: Integrated Waste Biorefineries as Power Plant of the Future

    A waste-driven factory is intended to valorize waste sources as renewable feedstock to recover value-added chemicals, materials, alternative fuels, and energy. This concept aims to integrate waste treatment, resource recovery, alternative fuels, and energy generation to shift from fossil-based linear economies to circular economies. Although the traditional linear economies have resulted in rapid economic growth, but at the cost of increasing energy demands, environmental pollution, and climate change. The Paris COP21 summit has recently set out a roadmap to reduce greenhouse gases (GHGs) emissions to keep global warming to 'well below 2oC'. Like global warming, the tremendous waste generation and its unsustainable disposal have emerged as a potential threat to our civilization. It is estimated that the current waste generation rate would escalate by three times by 2025. Traditional waste remediation methods are concerned with waste removal from collection points and their disposal in designated dumping sites where waste valorization to generate energy and other value-added products are rarely performed. These sites have become a major source of GHGs emissions contributing to climate change. As a result, nations are now focusing on treating or refining wastes instead of disposing, striving to recover energy and value-added products from waste to achieve a circular economy. In better words, using closed-loop waste bioprocessing units, the inherent net positive energy contained in solid, liquid, and gaseous wastes is harnessed and utilized as energy carriers. Despite their promising features, these individual processing technologies are incapable of handling the huge volume of waste at a single platform to achieve zero waste concept. They suffer from limited efficiencies and high capital and maintenance costs. Therefore, if these waste processing or waste-to-energy technologies could be integrated through the under-one-roof concept of a waste-driven factory, a significant part of wastes can be treated by various specialized techniques, while their outputs (heat, power, and fuel) could suffice the operating requirements of each other. An array of products including heat, power, fuel, and value-added chemicals, enzymes, and materials would be available, not only to run the waste-driven factory by itself but to support the national electric grids, vehicular gas stations, combined heat and power (CHP) units, and domestic heating and industrial furnaces. However, such waste-driven factories' overall sustainability should be assessed through various tools, including life cycle assessment (LCA), life cycle impact assessment (LCIA), and exergy.

    Prof. Caixia Chen

    East China University of Science and Technology

    Title: A Comprehensive Two-fluid Model for Industrial Moving Grate MSW Incinerators

    We present a comprehensive, efficient computational method for industrial moving grate MSW incinerators. In the new approach, the bed model includes a transient two-fluid simulation using realistic grate geometry cut by the incinerator throat, which includes a dynamic coupling of heat and mass transfers between the fuel bed and the lower combustion chamber. The kinetic theory of granular flow (KTGF) was introduced to describe the rheological properties of waste particles, and the Ergun model was used for the gas-solid drag. Thermal conversion of wastes was characterized by the heterogeneous reactions of moisture evaporation, devolatilization, char-O2 combustion and the homogeneous reactions of hydrocarbons combustion. The simulated bedtop profiles are then used as inlet conditions to run a 3D steady simulation of turbulent gas combustion for the whole furnace. The simulation results are validated with 3D transient full-incinerator results and on-site measurement data. The new computational method highly promotes the computational efficiency and shows a potential to serve as a useful tool for the design and operation of industrial moving grate MSW incinerators.

    Assoc. Prof. Jiyun Zhao

    City University of Hong Kong, HK, China

    Title: Optimization of air-cooling technology for LiFePO4 battery pack based on deep learning

    The forced air-cooling system is applied extensively in the battery thermal management system (BTMS) to ensure temperature uniformity because of the simple structure and low cost. In this paper, a BTMS of LiFePO4 cuboid battery module with adding different additional airflow outputs in typical U-type cooling system is designed to optimize temperature uniformity. Because the features of these additional airflow outputs, including positions, numbers and areas of them, influence the temperature of battery pack simultaneously, a nine-layer fully connected deep network AI model is built to find the relationship between temperature of pack and these features of additional airflow outputs in BTMS. The temperatures of batteries with different additional airflow outputs are simulated by a three-dimensional computational fluid dynamics (CFD) model. Comparing with the CFD simulation results, the AI model's mean absolute errors of maximum temperature and temperature differences are 0.046% and 0.99%, respectively. An optimal BTMS air-cooling design is found as a U-type structure adding three 4 mm additional airflow outputs with gaps of 40 mm, 120 mm, 10 mm, and 48 mm after comparison of 765,846 BTMS structures. The maximum temperature is decreased by 6.22 K, while the temperature difference is reduced by 40.36% compared to original design.

    Guest editor

    Assoc. Prof. Morteza Khoshvaght-Aliabadi

    Islamic Azad University, Shahrood, Iran

    6.Submission Guides

    Submissions will be sent to committee reviewers for a blind review. The reviewers use the following in evaluating research papers:

    1. Novel Contribution

    2. Originality in Thought

    3. Inferences

    4. Key Strengths

    5. Key Weaknesses

    6. Areas of Improvement

    7. Presentation/Organization of Research

    Note:

    Note: 

    * Abstracts or full papers will be accepted in English only.

    * An international panel of reviewers will review all abstracts or papers anonymously.

    * Prospective authors are invited to submit original, high quality papers which is original and has not been submitted and published elsewhere.

    * Manuscripts should be at least 5 full pages and at most 10 pages.

    * The reviewing process of the EEPS conference aims to provide authors with constructive feedback on their papers, even when a submission is rejected. All submissions will be subjected to double-blind peer reviews, who are expert or have been experiencing in the related field for years. The accepted papers must be revised, taking into consideration the referees' comments and suggestions, before inclusion in the conference proceedings.

    6.Registration

    Items---Registration fee (By US Dollar)

      Regular Registration---1225 USD/per paper

      Attendees without Papers ---180 USD / per person

    Attendees without Submission (Groups)---150 USD / per person(≥ 3  person)

    7.Schedule

    Schedule

    August 20---13:00-17:00---Registration

    August 21---09:00-12:00---Speeches of Keynote Speakers

    August 21---12:00-14:00---Lunch

    August 21---14:00-17:30---Oral Presentations

    August 21---18:00-19:30---Banquet

    August 22---09:00-18:00---Academic Investigation

    8.Contact Us

    Conference Secretary: Miss. May Chen

    Tel: +86-13922150140

    WeChat: 13922150140

    QQ: 371886761


    Keywords: Accepted papers list. Acceptance Rate. EI Compendex. Engineering Index. ISTP index. ISI index. Impact Factor.
    Disclaimer: ourGlocal is an open academical resource system, which anyone can edit or update. Usually, journal information updated by us, journal managers or others. So the information is old or wrong now. Specially, impact factor is changing every year. Even it was correct when updated, it may have been changed now. So please go to Thomson Reuters to confirm latest value about Journal impact factor.